Total No. of Questions-8]
TTotal No. of Printed Pages-4+1

[5252]-505

S.E. (Civil) (First Semester) EXAMINATION, 2017 ENGINEERING MATHEMATICS-III (2015 PATTERN)

Time : Two Hours

Maximum Marks : 50
N.B. :- (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6 and Q. No. 7 or Q. No. 8.
(ii) Figures to the right indicate full marks.
(iii) Neat diagrams must be drawn wherever necessary.
(iv) Use of electronic pocket calculator is allowed.
(v) Assume suitable data, if necessary.

1. (a) Solve any two of the following :
(i) $\quad\left(\mathrm{D}^{3}-\mathrm{D}^{2}+4 \mathrm{D}-4\right) y=e^{x}$.
(ii) $\left(\mathrm{D}^{2}+4\right) y=\sec 2 x$.
(by method of variation of parameters)
(iii) $\quad x^{3} \frac{d^{3} y}{d x^{3}}+x^{2} \frac{d^{2} y}{d x^{2}}-2 y=\frac{1}{x^{3}}$.
(b) Solve the following equations by using Gauss elimination method :

$$
\begin{aligned}
& 2 x_{1}+4 x_{2}+x_{3}=3 \\
& 3 x_{1}+2 x_{2}-2 x_{3}=-2 \\
& x_{1}-x_{2}+x_{3}=6 \\
& O r
\end{aligned}
$$

2. (a) A light horizontal strut $A B$ of length l is freely pinned at A and B and is under the action of equal and opposite
compressive forces P at each of its ends and carries a load W at its centre. How that the deflection at its centre is :

$$
\frac{\mathrm{W}}{2 \mathrm{P}}\left[\frac{1}{n} \tan \frac{n l}{2}-\frac{l}{2}\right]
$$

where $n^{2}=\frac{\mathrm{P}}{\mathrm{EI}}$.
(b) Use Runge-Kutta method of fourth order to obtain y when $x=1.1$ for

$$
\begin{gather*}
\frac{d y}{d x}=x^{2}+y^{2} \tag{4}\\
y(1)=1.5, \quad h=0.1
\end{gather*}
$$

(c) Solve the following system by Cholesky's method :

$$
\begin{align*}
& 4 x_{1}+2 x_{2}+14 x_{3}=14 \\
& 2 x_{1}+17 x_{2}-5 x_{3}=-101 \\
& 14 x_{1}-5 x_{2}+83 x_{3}=155 \tag{4}
\end{align*}
$$

3. (a) Calculate first three moments of the following distribution about the mean :

\boldsymbol{x}	\boldsymbol{f}
0	1
1	8
2	28
3	56
4	70
5	56
6	28
7	8
8	1

(b) If mean and variance of binomial distribution are 12 and 3 respectively, find $\mathrm{P}(r) \geq 1)$.
(c) Find the directional derivative of $\phi=x^{2}-y^{2}-2 z^{2}$ at the point $\mathrm{P}(2,-1,3)$ in the direction PQ where $\mathrm{Q}(5,6,4)$. [4] Or
4. (a) Prove the following (any one) :
(i) $\nabla \cdot\left(r^{3} \bar{r}\right)=3 r\left(r^{2}+1\right)$
(ii) $\nabla^{2}\left[\nabla \cdot\left(r^{-2} \bar{r}\right)\right]=2 r^{-4}$
(b) Prove that :

$$
\overline{\mathrm{F}}=\frac{1}{r}\left[r^{2} \bar{a}+(\bar{a} \cdot \bar{r}) \bar{r}\right]
$$

is irrotational.
(c) Obtain correlation coefficient between population density and death rate from the data related to 5 cities.

Population density Death rate
200 2 12
$500 \downarrow 18$
400 16
$700 \quad 21$
$300 \quad 10$
5. (a) Evaluate $\int_{\mathrm{C}} \overline{\mathrm{F}} . d \bar{r}$ where $\overline{\mathrm{F}}=\left(x^{2}+y^{2}\right) \hat{i}+\left(x^{2}-y^{2}\right) \hat{j}$ and C is the curve $y=x^{2}$ joining $(0,0)$ and $(1,1)$.
(b) Using Gauss divergence theorem, for the vector function $\overline{\mathrm{F}}=\left(x^{3}-y z\right) i-2 x^{2} y \hat{j}+2 \hat{k}$. evaluate $\iint_{\mathrm{S}} \overline{\mathrm{F}} . d \overline{\mathrm{~S}}$, where S is the surface bounding. The cube $x=0, y=0, z=0$ and $x=a$, $y=a$ and $z=a$.
(c) Evaluate usingStokes' theorem $\int_{\mathrm{C}} \overline{\mathrm{F}} . d \bar{r}$, where $\overline{\mathrm{F}}=y z \hat{i}+z x \hat{j}+x y \hat{k}$ and C is the curve $x^{2}+y^{2}=1, z=y^{2}$.

Or
6. (a) Show that $\overline{\mathrm{F}}=\left(2 x y+z^{3}\right) \hat{i}+x^{2} \hat{j}+3 x z^{2} \hat{k}$ is a conservative force field. Find the work done by the force $\cdot \overline{\mathrm{F}}$ in moving the object from (1, $-2,1$) to (3, 1, 4).
(b) Evaluate using Stokes theorem $\iint_{\mathrm{s}} \nabla \times \overline{\mathrm{F}} . d \overline{\mathrm{~S}}$, where $\overline{\mathrm{F}}=(2 x-y) \hat{i}-y z^{2} \hat{j}-y^{2} z \hat{k}$, where S is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and $z \geq 0$.
(c) Evaluate $\iint_{\mathrm{S}} \bar{r} . \hat{n} d \mathrm{~S}$ over the surface of a sphere of radius 2 with origin as centre.
7. (a) Solve $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$ subject to the following conditions : [7]
(i) $\quad y(0, t)=0, \forall t$
(ii) $y(l, t)=0, \forall t$
(iii) $\left(\frac{\partial y}{\partial t}\right)_{t=0}=0$
(iv) $y(x, 0)=\frac{3 a}{2 l} x, 0<x<\frac{2 l}{3}$

$$
=\frac{3 a}{l}(l-x), \frac{2 l}{3}<x<l .
$$

(b) An infinitely long plane uniform plate is bounded by two parallel edges in the y-direction and an end at right angles to them. The breadth of the plate is π. This end is maintained at the constant.temperature $40^{\circ} \mathrm{C}$ at all points and other edges at zero temperature. Find the steady state temperature $u(x, y)$.
Or
8. (a) Solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ subject to the following conditions :
(i) u is finite for all t
(ii) $u(0, t)=0, \forall t$
(iii) $u(l, t)=0, \forall t$
(iv) $u(x, 0)=\pi x-x^{2}, 0 \leq x \leq \pi$.
(b) Solve the wave equation :

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=a^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{6}
\end{equation*}
$$

subject to the following conditions :
(i) $u(0, t)=0, \forall t$
(ii) $u(\pi, t)=0, \forall t$
(iii) $\left(\frac{\partial u}{\partial t}\right)_{t=0}=0$
(iv) $u(x, 0)=2 x, 0<x<\pi$.

