SEAT No.:

P3130

[Total No. of Pages: 3

[5354]-620 B.E. (E & TC)

DETECTION AND ESTIMATION THEORY (2012 Pattern) (Elective - IV)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Attempt Q.No. 1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q7 or Q.8, Q.9 or Q.10.
- 2) Figures to the right indicate full marks.
- Q1) a) Write characteristics of Maximum Likelihood Estimator. [5]
 - b) What is Bayes criteria. Derive the expression for Bayes Dession rule. Under what condition Bayes criteria reduces to LRT and MAP. [5]

OR

Q2) a) Explain Recursive Least Square Estimation.

[5]

- b) Explain how decision rule is framed in case of multiple hypothesis tests.[5]
- **Q3)** a) Write a short note on Minimum Variance Unbiased Estimator. [5]
 - b) State and explain Cramer-Rao inequality for a Random Parameter. [5]

OR

Q4) a) A ternary communication system transmits one of the three amplitude signal {1, 2, 3} with equal probabilities. The independent received signal samples under each hypothesis are [5]

$$H1: Yk = 1 + N K = 1, 2..K$$

$$H2: Yk = 2 + N K = 1, 2...K$$

$$H3: Yk = 3 + N K = I,2,...K$$

The additive noise N is Gaussian with mean zero and variance $\sigma 2$. The costs are Cii = 0 and Cij = 1 for $i \neq j$. Ij, j = 1, 2, 3 determine the decision regions

P.T.O.

Q5)	a)	Write a note on Discrete Wiener Filter. [8]
	b)	Explain Kalmans filter in context of estimation theory. [8]
		OR
Q6)	a)	What is Cramer Rao Bound inequality and what are its limitations discuss in detail. [8]
	b)	Write a note on Recursive Least-Square Estimator. [8]
Q 7)	a)	In the received signal under hypothesis H_1 and H_0 was [8]
		$H_1: Yk = m + N_k,$ $k = 1, 2,K$
		$H_0: Y_k = N_k,$ $k = 1, 2,K$
		i) Assuming the constant m is unknown. Obtain the Maximum Likelihood estimation of the mean
		ii) Suppose now mean 'm' is known but the variance is unknown. Obtain the MLE.
	b)	In on-off keying system, the source transmits signal of amplitude I volt or 0 volt. Noise n(t) is added which has zero mean and variance = 1 and it is Gaussian. Set up the LRT (Likelihood Ratio Test) for this problem.[8]
		OR
Q8)	a)	A rectangular pulse of known amplitude A is transmitted starting at time instant t_0 with probability 1/2. The duration T of the pulse is a random variable uniformly distributed over the interval [T1, T2]. The additive noise to the pulse is white Gaussian with mean zero and variance N0/2. Determine the likelihood ratio. [8]
	b)	Explain best linear unbiased Estimator (BLUE)? [8]

Discuss the Bays estimation method briefly for Least Square Estimation

b)

and Kalman filter.

- **Q9)** a) Explain the Radar Elementary concepts- Range, Range Resolution, and Doppler Shift. [9]
 - b) Give a Review of Some CFAR Detectors. [9]

OR

- **Q10)**a) What is CFAR Detection and state the Principles of Adaptive CFAR Detection. [9]
 - b) Write short note on Neyman-Pearson detector. [9]