22445

12223

3 Hours / 70 Marks
 \square

Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answer with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following:

a) Define fluid pressure intensity and pressure head.
b) Convert $10 \mathrm{~N} / \mathrm{cm}^{2}$ pressure in oil column of specific gravity 0.82 .
c) State the types of Fluid flow.
d) State the various minor losses in the pipe.
e) Write Chezy's equation. State the meaning of each term.
f) State the necessity of draft tube for every reaction turbine.
g) Define the following terms-
i) NPSH
ii) Negative slip.
2. Attempt any THREE of the following:
a) Different pressure gauges shows following sets of reading
i) $100 \mathrm{~kg}_{\mathrm{f}} / \mathrm{cm}^{2}$
ii) 15 bar convert it into $\mathrm{N} / \mathrm{mm}^{2}$ and $\mathrm{N} / \mathrm{m}^{2}$.
b) A circular plate 3 m . diameter is immersed in water in such a way that its greatest and least depth below the free surface of water are 4 m and 1 m respectively Determine the total pressure and position of center of pressure.
c) Derive the equation for coefficient of discharge [Cd] for Venturimeter.
d) Explain with neat sketch the procedure for measuring velocity in pipe using Pitot tube.
3. Attempt any THREE of the following:
a) A Venturimeter is installed in a pipeline of 30 cm diameter, the difference of pressure at entrance and throat read by mercury manometer is 5 cm . When the water flows at a rate of $0.05 \mathrm{~m}^{3} / \mathrm{sec}$. If the discharge coefficient of meter is 0.96 , determine the diameter of throat.
b) Explain H.G.L and T.E.L with neat sketch.
c) State the equation for hydraulic power transmission through pipe and obtain the condition for maximum power transmission.
d) Derive an expression for force exerted by jet on stationary inclined flat plate in direction of jet.
e) A horizontal jet of water is delivered under an effective head of 25 m . Calculate the diameter of jet if the force exerted by the jet on a vertical fixed plate is 2.22 kN Take coefficient of Velocity as 0.99 .
4. Attempt any THREE of the following:
a) Differentiate between Francis Turbine and Kaplan Turbine. (Any Four Points).
b) Classify turbines according to following-
i) Head at the inlet of turbine.
ii) The direction of flow of water through runner.
c) A Pelton wheel bucket is 1 m in diameter. Pressure head at nozzle when it is closed is 15 bar. The discharge when Nozzle is open is $3.5 \mathrm{~m}^{3} / \mathrm{min}$. If speed is 600 RPM , Calculate power developed and hydraulic efficiency.
d) Define the following w.r.t centrifugal pump.
i) Manometric head
ii) Manometric efficiency.
e) Explain the working of double acting Reciprocating pump with neat sketch.
5. Attempt any TWO of the following:
a) A Pitot tube was used to measure the quantity of water flowing in a pipe of 0.3 m diameter. The water was raised to a height of 0.25 m above the centerline of pipe in a vertical limb of the tube. If the mean velocity is 0.78 times the velocity at center and coefficient of pitot tube is 0.98 , find the quantity of water in lit/sec. Static pressure head at centre of the pipe is 0.2 m .
b) Find the maximum power that can be transmitted by a power station through a hydraulic pipe 3 km long and 0.2 m diameter. The pressure at the power station is 60 bars. Take $\mathrm{f}=0.0075$.
c) A jet of water 80 mm diameter moving with a velocity $20 \mathrm{~m} / \mathrm{sec}$, strikes a stationary plate. Find the normal force on the plate, when
i) The plate is normal to the jet.
ii) The angle between jet and plate is 30°
6. Attempt any TWO of the following: $\mathbf{1 2}$
a) Explain the construction and working principle of Pelton wheel turbine with neat sketch.
b) A centrifugal pump is to discharge water at the rate of $110 \mathrm{lit} / \mathrm{sec}$ at the speed of 1450 rpm against head of 13 m . Impeller diameter is 250 mm and its width is 50 mm . If manometric efficiency is 75%, determine Vane angle at outer periphery.
c) Centrifugal pump not delivering water, give at least three reasons and remedies.

