## MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

## SUMMER-2022 EXAMINATION

## SUMMER - 2022 EXAMINATION

Subject Name:
Model AnswerSubject Code:
Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.
8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English + Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

|  |  | Attempt any FIVE of the following: | 10 Marks |
| :---: | :---: | :---: | :---: |
| a) | i) | Surface tension: The property of the fluid which enables it to resist tensile stressis called surface tension. <br> Dynamic viscosity: Dynamic viscosity $\mu$, may be defined as the shear stress required to produce unit rate of angular deformation. <br> Mathematically, $\mu=\frac{\tau}{d v / d y}$ | 01 M <br> 01 M (either definition or methematica 1 relation) |
| b) |  | a. 1 (b) <br> waker clm bt. 6 m <br> (i) intensity -8 pressure (Kpa) $\begin{aligned} P & =h \cdot f \cdot g \cdot \\ & =6 \times 10^{3} \times 9.81 \\ P & =5 \mathrm{~s} .86 \mathrm{kpa} \end{aligned}$ | 1 M for P |

## SUMMER-2022 EXAMINATION

## Subject Name:

Model AnswerSubject Code:

|  |  | 10.33 m ----- 760 mm og Hg <br> $6 \mathrm{~m}=$ ? <br> $\frac{6}{10.33} * 760=441.41 \mathbf{m m}$ of $\mathbf{H g}$ <br> OR <br> Q. 1 <br> (b) $p=\rho g h$ <br> Pressince will remain sane be both the liavids $\begin{aligned} & \rho_{\mathrm{Hg}} \times g \times h_{\mathrm{Hg}}=\rho_{\omega} \times g \times h_{\omega} \\ & \rho_{\mathrm{Hg}} \times h_{\mathrm{rg}}=\rho_{\omega} \times h_{\text {o }} \\ & h_{\mathrm{Hg}}=\frac{1000 \times 6}{13.6}=441.176 \mathrm{~mm} \\ & h_{\mathrm{mg}}=441.176 \mathrm{~mm} \text { of } \mathrm{Hz} \end{aligned}$ <br> $\therefore$ Presstre is 441.176 mm of Hg | 1 M for pressure in mm of hg |
| :---: | :---: | :---: | :---: |
| c) | i) | Steady Flow:Fluid flow is said to be steady if at any point in the flowing fluid various characteristics such as velocity, pressure, density, temperature etc., do not change with time. <br> Unsteady or non-steady flow: -Fluid flow is said to be unsteady if at any point in the flowing fluid any one or all the characteristics such as velocity, pressure, density, temperature etc., changes with time. | 1 M 1 M |
| d) |  | Laws of fluid friction for Turbulent Flow <br> Frictional resistance is proportional to square of velocity of flow. | 2M |

$\qquad$

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(ISO/IEC - 27001-2013 Certified)
SUMMER-2022 EXAMINATION
Model AnswerSubject Code:

$\qquad$

Model AnswerSubject Code:

| 2 | Attempt any THREE of the following: | 12 M |
| :---: | :---: | :---: |
| a) | Bourdon tube pressure gauges are used for the measurement of relative pressures from $0.6 \ldots$ 7,000 bar. They are classified as mechanical pressure measuring instruments, and thus operate without any electrical power. <br> Bourdon tube pressure gauge <br> Bourdon tubes are radially formed tubes with an oval cross-section. The pressure of the measuring medium acts on the inside of the tube and produces a motion in the non-clamped end of the tube. This motion is the measure of the pressure and is indicated via the movement. The C-shaped Bourdon tubes, formed into an angle of approx. $250^{\circ}$, can be used for pressures up to 60 bar. For higher pressures, Bourdon tubes with several superimposed windings of the same angular diameter (helical tubes) or with a spiral coil in the one plane (spiral tubes) are used. | 02 M |
|  |  | $02 \mathrm{M}$ <br> For fig. |

$\qquad$

$$
\text { SUMMER - } 2022 \text { EXAMINATION }
$$


$\qquad$
$\qquad$

$\qquad$

|  |  | $\begin{array}{r} A_{1} v_{1}=A_{2} v_{2} \\ \Rightarrow v_{1}=\frac{A_{0} C_{c}}{A_{1}} v_{2} \\ v_{2}=\sqrt{2 g h+\frac{A_{0}^{2} C_{c}^{2} v_{2}^{2}}{A_{1}^{2}}} \\ \Rightarrow v_{2}=\frac{\sqrt{2 g h}}{\sqrt{1-\frac{A_{0}^{2}}{A_{1}^{2}} C_{c}^{2}}} \end{array}$ <br> Thus, discharge, $Q=A_{2} v_{2}=v_{2} A_{0} C_{c}=\frac{A_{0} C_{c} \sqrt{2 g h}}{\sqrt{1-\frac{A_{0}^{2}}{A_{1}^{2}} C_{c}^{2}}}$ <br> If $C_{d}$ is the co-efficient of discharge for orifice meter, which is defined as $\begin{aligned} & C_{d}=C_{c} \frac{\sqrt{1-\frac{A_{0}^{2}}{A_{1}^{2}}}}{\sqrt{1-\frac{A_{0}^{2}}{A_{1}^{2}} C_{c}^{2}}} \\ & \Rightarrow C_{c}=C_{d} \frac{\sqrt{1-\frac{A_{0}^{2}}{A_{1}^{2}} C_{c}^{2}}}{\sqrt{1-\frac{A_{0}^{2}}{A_{1}^{2}}}} \end{aligned}$ <br> Thus we will use the value of CC in above equation of discharge Q and we will have following result for rate of flow or discharge through orifice meter. $Q=C_{d} \frac{A_{0} A_{1} \sqrt{2 g h}}{\sqrt{A_{1}^{2}-A_{0}^{2}}}$ <br> Co-efficient of discharge of the orifice meter will be quite small as compared to the co-efficient of discharge of the venturimeter. |  |
| :---: | :---: | :---: | :---: |
| 3 | a | Attempt any THREE of the following: <br> A venturi meter having throat diameter 6.3 cm is provided on a pipe of 15 cm diameter. If oil of specific gravity 0.88 is flowing in the upward direction, determine the Ventury head and the discharge if the manometer shows 12.80 cm of mercury deflection. If the vertical | 01 m to find $h($ ventury head), 02 m for |

distance between inlet and throat is 22 cm . Determine the actual head of the venturi meter. Assume Cd = 0.65.

Throat dia, $\mathrm{d} 2=6.3 \mathrm{~cm}, a 2=\frac{\pi}{4} d 2^{2}=31.17 \mathrm{~cm} 2$
Pipe dia, $\mathrm{d} 1=15 \mathrm{~cm}, a 1=\frac{\pi}{4} d 1^{2}=176.71 \mathrm{~cm} 2$
Sp Gravity of oil Soil= 0.88
Manometer Reading , $\mathrm{x}=12.8 \mathrm{~cm}$ of Hg
$\mathrm{Cd}=0.65$
1.Ventury Head (h)

2.Discharge (Q)
$Q=C d * a 1 * a 2 * \frac{\sqrt{2 g h}}{\sqrt{a 1^{2}-a 2^{2}}}$
$=0.65 * 176.71 * 31.17 * \frac{\sqrt{2 * 981 * 18501}}{\sqrt{176.71^{2}-31.17^{2}}}$
$\mathrm{Q}=12400.99 \mathrm{~cm} 3 / \mathrm{sec}$
$\mathrm{Q}=12.4$ litres $/ \mathrm{sec}$
3.Actual Ventury Head if $\mathrm{Z} 2-\mathrm{Z1}=22 \mathrm{~cm}$
$\left(\frac{p 1}{\rho g}+Z 1\right)-\left(\frac{p 2}{\rho g}+Z 2\right)=h$
$\left(\frac{p 1}{\rho g}-\frac{p 2}{\rho g}\right)+Z 1-Z 2=h$
$\mathrm{Z} 2-\mathrm{Z} 1=22 \mathrm{~cm}, \mathrm{~h}=185.01$
Therefore,
$\left(\frac{p 1}{\rho g}-\frac{p 2}{\rho g}\right)=185.01+22=207.01 \mathrm{~cm}$ of oil
$\qquad$


## SUMMER-2022 EXAMINATION


$\qquad$

## SUMMER-2022 EXAMINATION

## Subject Name:

Model AnswerSubject Code:

|  |  | Torque exerted by the water on the wheel, $\begin{aligned} T & =\text { Rate of change of angular momentum } \\ & =[\text { Initial angular momentum per second }- \text { Final angular momentum per second }] \\ & =\rho a V_{1} \times V_{w_{1}} \times R_{1}-\left(-\rho a V_{1} \times V_{w_{2}} \times R_{2}\right)=\rho a V_{1}\left[V_{w_{1}} \times R_{1}+V_{w_{2}} R_{2}\right] \end{aligned}$ <br> Work done per second on the wheel $\begin{aligned} & =\text { Torque } \times \text { Angular velocity }=T \times \omega \\ & =\rho a V_{1}\left[V_{w_{1}} \times R_{1}+V_{w_{2}} R_{2}\right] \times \omega=\rho a V_{1}\left[V_{w_{1}} \times R_{1} \times \omega+V_{w_{2}} R_{2} \times \omega\right] \\ & =\rho a V_{1}\left[V_{w_{1}} u_{1}+V_{w_{2}} \times u_{2}\right] \quad\left(\because u_{1}=\omega R_{1} \text { and } u_{2}=\omega R_{2}\right) \end{aligned}$ $F_{x} \text { is written as } F_{x}=\rho a V_{r_{1}}\left[V_{w_{1}} \pm V_{w_{2}}\right]$ |  |
| :---: | :---: | :---: | :---: |
|  | e | A jet of water 10 cm diameter strikes on a flat plate with a velocity of $20 \mathrm{~m} / \mathrm{s}$. The plate is moving with a velocity of $10 \mathrm{~m} / \mathrm{s}$ in the direction of jet and away from the jet. Find the efficiency of the jet. <br> Given data : <br> Dia. Of pipe, $\mathrm{d}=10 \mathrm{~cm}$ <br> Velocity of the Jet , V=20 m/s <br> Velocity of the plate, $\mathrm{u}=10 \mathrm{~m} / \mathrm{s}$ <br> Densityofthewater , $\mathrm{p}=1000 \mathrm{~kg} / \mathrm{m} 3$ <br> $F=\mathrm{p} * a *(V-u) 2$ <br> $F=1000 * \frac{\pi}{4} d^{2} *(V-u) 2$ <br> KEatinlet $=\left(\frac{1}{2} * \mathrm{p} * a * V 3\right)$ ( 1 mark) <br> Efficiency of the jet. $x=\frac{\text { work done per }}{\text { Energyatinlet }}=\frac{\mathrm{F} * \mathrm{u}}{K E}=\frac{\mathrm{p} * a *(V-u) 2 * u}{\left({ }_{2}^{\frac{1}{2}} * \mathrm{p} * a * V 3\right)}=\frac{2 *(20-10)^{2} * 10}{20^{3}}=0.25------(2 \mathrm{mark})$ <br> Efficiency of the jet. $x=25 \%$ | 01 m to find out F, 01 m for KE, 02 m for efficiency. |
| 4 | a | Attempt any THREE of the following: <br> Describe with neat sketches different types of draft tubes with use. | 2 marks for fig. and 2 marks for explanatio n |

## SUMMER-2022 EXAMINATION


$\qquad$

## SUMMER-2022 EXAMINATION


$\qquad$

$$
\text { SUMMER - } 2022 \text { EXAMINATION }
$$

## Subject Name:

| Model AnswerSubject Code: | 22445 |
| :--- | :--- |


$\qquad$

## MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

## SUMMER-2022 EXAMINATION

## Subject Name:

Model AnswerSubject Code:

|  | Main characteristics curves The main characteristics curves are obtained by keeping the pump at constant speed and varying the discharge over desired range. The discharge is varied by means of deliver valve. For different values of discharge the measurements are taken or calculated for manometric head, shaft power and efficiency These curve are useful in evaluating the performance of pump at different speeds. |  |
| :---: | :---: | :---: |
| e | Write any four operational difficulties commonly experienced in centrifugal pump and their remedies. <br> 1. Pump Running Dry <br> If you are not getting any flow after starting your centrifugal pump, there could be several different causes and remedies. <br> Air in pump - Ensure the pipework and pump are completely filled with liquid. <br> Suction lift is too high - Check for any obstructions in the inlet and verify that static lift is correct. <br> Clogged parts - Check and clean the valve, impeller, and strainer. | $04 \mathrm{~m} 1 \mathrm{~m}$ for each |

$\qquad$

## 2. Reversed Impeller Rotation

Impellers rotating in the wrong direction is a common problem with centrifugal pumps. If the impellers turn the wrong way, they could cause severe damage to the pump. When wiring power to the pump's motor, it's critical to verify which way the motor turns. You can "bump start" the motor to do this.

## 3. Pump Leakage

Another common problem with these types of centrifugal pumps is leakage. When materials escape the pump and create a mess, this is a serious issue. Excessive temperature, corrosion, or pressure can loosen the joints and seals, allowing fluid and debris to escape.

But there may be a simple fix. Stopping your leaky pump could be as easy as tightening the fasteners surrounding the joints. In other cases, however, may need to replace a gasket or mechanical seal.

## 4. Slow Pump Re-Priming

There is probably something wrong with pump if it takes too long to re-prime. The most common cause of a slow re-priming pump is excessive clearance, leading to inefficiency and overheating. But other possible reasons exist as well, such as a leaking gasket, a clogged recirculation port, or a worn-out volute.

## 5. Pump Seizure

Pump seizure can happen for several reasons, including foreign objects entering the pump, low flow operation, and off-design conditions. Inspect the pump for foreign objects and debris first and then check the impellers and power source.

## 6. Pump Vibration

When the pump vibrating too much or notice usual noises coming from the device, this could signify a serious issue. Often, vibrations and noises tell that failed bearings or a foreign object stuck inside the pump.

Start with the most straightforward thing first and look for debris or foreign objects. When noises and vibrations occur together, the pump could be experiencing cavitation and may need to be examined by a professional.
7. Debris in Pump

Debris in your pump can create havoc with many of its parts and systems. If pump isn't pumping or is less efficient, check for a clogged suction pipe or debris in the impeller.

## 8. Pump Driver Overloaded

In centrifugal pumps, overloading occurs when the driving motor draws excess current, which
$\qquad$
results in greater than normal power consumption. Pumps should start with a minimum load with discharge valves open. If the power drawn by the pump increases too much, it may ultimately lead to tripping or overloading of the motor. Some of the most common causes of pump driver overload include:

- The speed of the pump is too fast
- An oversized impeller was installed
- Worn or damaged bearings
- Processing liquids of higher viscosity
- Bent shaft
- Misalignment between driver and pump
- Mechanical seal putting too much pressure on the seat
- Stationary parts coming into contact with rotating parts
- Pump operating too far out of optimum range


## 9. Poor Efficiency

If the pump isn't operating efficiently anymore, meaning it's taking too long for it to pump out fluid, some of the most common causes of this problem include the following.

- A leaky gasket
- Incorrect impeller rotation
- Damaged or worn impeller, worn-out ring, or damaged wear plate
- An open bypass valve
- Blockage in pump inlet, discharge line, or impeller

10. Bearing Overheating

Centrifugal pumps should not feel hot to the touch. When they do, this is a sign of trouble . There may be a blockage in the suction strainer, the recirculation port, the valve, or the openended discharge line.
$\qquad$ / N

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(ISO/IEC - 27001 - 2013 Certified)
SUMMER-2022 EXAMINATION
Subject Name:
Model AnswerSubject Code:

$\qquad$ / N

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

## SUMMER-2022 EXAMINATION

| b | (b) Civen Date:- <br> length of pipe $=L=4000 \mathrm{~m}, \quad H=400 \mathrm{~m}, F=0.005$ $\begin{array}{rl} h_{f}=\frac{H}{3}=\frac{400}{3}=133.33 \mathrm{~m} \\ h_{f} & =\frac{4 \mathrm{FLV}}{} \\ 2 g a & 4 \times 0.005 \times 4000 \times \mathrm{v}^{2} \\ 2 \times 9.81 \times 0.4 \end{array} h_{f}=10.193 \mathrm{v}^{2}$ <br> Equating the two values, $\begin{gathered} 133.33=10.193 v^{2} \\ \therefore V=3.616 \mathrm{~m} / \mathrm{s} \\ Q=A V=3.616 \times \frac{\pi}{4}(0.4)^{2} \\ Q=0.4543 \mathrm{~m}^{3} / \mathrm{s} \end{gathered}$ <br> Head available at the end of the pipe, $\begin{aligned} & =H-H_{F}=H-\frac{H}{3}=\frac{2 H}{3} \\ & =\frac{2 \times 400}{3}=266.666 \mathrm{~m} \end{aligned}$ $\begin{aligned} \text { moxm power Arailable } & =\frac{\rho \times g \times Q \times H e a d ~ a t ~ t h e ~ e n d ~ o f ~ p i p e ~}{1000} \\ & =\frac{1000 \times 9.81 \times 0.4543 \times 266.666}{1000} \end{aligned}$ $\text { max }{ }^{m} \text { power Avilable }=1188.445 \mathrm{kw}$ | Hf---2m Q---1m Head --- $1 m$ Power - $2 m$ |
| :---: | :---: | :---: |

$\qquad$

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(ISO/IEC - 27001-2013 Certified)

$$
\text { SUMMER - } 2022 \text { EXAMINATION }
$$


$\qquad$

SUMMER-2022 EXAMINATION
Subject Name:
Model AnswerSubject Code:


## Theoretical Indicator Diagram for Single acting reciprocating pump:-


explanatio n of effect, 2 m for fig of effect

## Effect of Acceleration and Friction in Suction and Delivery Pipes on Indicator Diagram.

Fig. shows the combined effect of acceleration and friction in suction and delivery pipes. The pressure head in the cylinder during suction and delivery strokes will change as given below :
(i) At the beginning of the suction stroke, $\theta=0^{\circ}$ and hence $h_{a s}$ is equal to $\frac{l_{s}}{g} \times \frac{A}{a_{s}} \omega^{2} r$. But $h_{f s}=0$. Thus, the pressure head in the cylinder will be $\left(h_{s}+h_{a s}\right)$ below the atmospheric pressure head.
(ii) At the middle of the suction stroke, $h_{a s}=0$ but $h_{f s}=\frac{4 \times f \times l_{s}}{d_{s} \times 2 g} \times\left(\frac{A}{a_{s}} \omega r\right)^{2}$. Thus, the pressure head in the cylinder will be $\left(h_{s}+h_{f s}\right)$ below the atmospheric pressure head.
(iii) At the end of the suction stroke, $h_{a s}=-\frac{l_{s}}{g} \times \frac{A}{a_{s}} \omega^{2} r$ but $h_{f s}=0$. Thus, the pressure head in the cylinder will be ( $h_{s}-h_{a s}$ ) below the atmospheric pressure head.
(iv) At the beginning of the delivery stroke, $h_{a d}=-\frac{l_{d}}{g} \times \frac{A}{a_{d}} \times \omega^{2} r$ but $h_{f d}=0$. Thus, the pressure head in the cylinder will be $\left(h_{d}+h_{a d}\right)$ above the atmospheric pressure head.
$\qquad$ / N
(v) In the middle of the delivery stroke, $h_{a d}=0$ and $h_{f d}=\frac{4 f l_{d}}{d_{d} \times 2 g} \times\left(\frac{A}{a_{d}} \omega r\right)^{2}$. Thus the pressure head in the cylinder will be ( $h_{d}+h_{f d}$ ) above the atmospheric pressure head.
(vi) At the end of the delivery stroke, $h_{a d}=-\frac{l_{d}}{g} \times \frac{A}{a_{d}} \times \omega^{2} r$ and $h_{f d}=0$. Thus, the pressure head in the cylinder will be ( $h_{d}-h_{a d}$ ) above the atmospheric pressure head.

Thus, the indicator diagram with acceleration and friction in suction and delivery pipes will become as shown in Fig.


Fig. Effect of acceleration and friction on indicator diagram.
$\qquad$

$\qquad$

$\qquad$

$$
\text { SUMMER - } 2022 \text { EXAMINATION }
$$


$\qquad$

